Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cytoplasmic vacuolation, adaptation and cell death: A view on new perspectives and features

Identifieur interne : 002680 ( Main/Exploration ); précédent : 002679; suivant : 002681

Cytoplasmic vacuolation, adaptation and cell death: A view on new perspectives and features

Auteurs : Tamás Henics [Hongrie, Autriche] ; Denys N. Wheatley [Royaume-Uni]

Source :

RBID : ISTEX:457C5DB5194167CDCC950A80AAE38B8E9327A60A

English descriptors

Abstract

Summry— This review focuses on a widely‐observed morphological phenomenon, a unique class of cytoplasmic vacuolation, found in cultured (mammalian) cells. This vacuolation is quite distinct from autophagosomal and heterophagosomal, ie excessive lysosomal vacuolation, and occurs in most cell types spontaneously or via a wide range of inductive stimuli. Apart from vacuolation arising artefactually (usually due to poor fixation), spontaneous vacuolation occurs in individual or small clusters of cultured cells without apparent change in their local environment, while neighbouring cells remain completely unaffected. Since spontaneous vacuolation is unpredictable, the process of vacuolation — or ‘vacuolisation’ — (‘Vacuolation’ is the state of being with vacuoles; ‘vacuolisation’ therefore implies the process of becoming vacuolated. However, only the quicker term vacuolation will be used throughout this review to refer to the process of vacuole development.) induced experimentally, and hence relatively reproducibly by a range of substances and disturbances, offers an experimental approach which should give further insight into its physiology and pathophysiology. Unfortunately, our knowledge here remains woefully inadequate compared with the purely morphological aspects of the phenomenon. Vacuolation following disturbances could have an underlying common mechanism; however, a review of the literature suggests that this is not the case, and that it occurs via several different pathways, involving many different cell organelles and structures. All cells appear to retain the capacity to vacuolate for some physiological purpose, and it can be a permanent feature in many cell types, particularly ‘lower’ organisms and plants. Vacuolation in cells is generally seen as an adaptive physiological response, presumably for ‘damage limitation’, but very little is known about the intracellular homeostatic mechanisms which operate to restore the status quo. Where damage limitation fails, cells usually die quickly, but no clear evidence has been found that this is in any way ‘programmed’. It is argued that the demise which occurs via the vacuolation route may, in fact, be a distinct form of cell death which is difficult to fit into the conventional lytic and apoptotic modes.

Url:
DOI: 10.1016/S0248-4900(00)88205-2


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cytoplasmic vacuolation, adaptation and cell death: A view on new perspectives and features</title>
<author>
<name sortKey="Henics, Tamas" sort="Henics, Tamas" uniqKey="Henics T" first="Tamás" last="Henics">Tamás Henics</name>
</author>
<author>
<name sortKey="Wheatley, Denys N" sort="Wheatley, Denys N" uniqKey="Wheatley D" first="Denys N" last="Wheatley">Denys N. Wheatley</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:457C5DB5194167CDCC950A80AAE38B8E9327A60A</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0248-4900(00)88205-2</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-KMW4XN11-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A28</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A28</idno>
<idno type="wicri:Area/Istex/Curation">001A28</idno>
<idno type="wicri:Area/Istex/Checkpoint">001496</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001496</idno>
<idno type="wicri:doubleKey">0248-4900:1999:Henics T:cytoplasmic:vacuolation:adaptation</idno>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:01854A49402365306AEF83248B82C4C548AA60F2</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-C6C77JXJ-6/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002857</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002857</idno>
<idno type="wicri:Area/Istex/Curation">002857</idno>
<idno type="wicri:Area/Istex/Checkpoint">001435</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001435</idno>
<idno type="wicri:doubleKey">0248-4900:1999:Henics T:cytoplasmic:vacuolation:adaptation</idno>
<idno type="wicri:Area/Main/Merge">002716</idno>
<idno type="wicri:Area/Main/Curation">002680</idno>
<idno type="wicri:Area/Main/Exploration">002680</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Cytoplasmic vacuolation, adaptation and cell death: A view on new perspectives and features</title>
<author>
<name sortKey="Henics, Tamas" sort="Henics, Tamas" uniqKey="Henics T" first="Tamás" last="Henics">Tamás Henics</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Medical Microbiology and Immunology, University Medical School of Pécs, H‐7643 Pécs</wicri:regionArea>
<wicri:noRegion>H‐7643 Pécs</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Correspondence address: Correspondence and reprints: present address: Institute for Microbiology and Genetics, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wheatley, Denys N" sort="Wheatley, Denys N" uniqKey="Wheatley D" first="Denys N" last="Wheatley">Denys N. Wheatley</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Cell Pathology, MacRobert Building, University of Aberdeen, 581 King Street, Aberdeen AB24 5UA</wicri:regionArea>
<wicri:noRegion>Aberdeen AB24 5UA</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biology of the Cell</title>
<title level="j" type="alt">BIOLOGY OF THE CELL</title>
<idno type="ISSN">0248-4900</idno>
<idno type="eISSN">1768-322X</idno>
<imprint>
<biblScope unit="vol">91</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="485">485</biblScope>
<biblScope unit="page" to="498">498</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1999-09">1999-09</date>
</imprint>
<idno type="ISSN">0248-4900</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0248-4900</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Actin</term>
<term>Actin filaments</term>
<term>Amino acids</term>
<term>Apoptotic modes</term>
<term>Basic substances</term>
<term>Cause vacuolation</term>
<term>Cell</term>
<term>Cell biol</term>
<term>Cell culture</term>
<term>Cell death</term>
<term>Cell degeneration</term>
<term>Cell demise</term>
<term>Cell membrane</term>
<term>Cell organelles</term>
<term>Cell pathology</term>
<term>Cell periphery</term>
<term>Cell vacuolation</term>
<term>Cells biology</term>
<term>Cells henics</term>
<term>Classic example</term>
<term>Clear evidence</term>
<term>Clear vacuoles</term>
<term>Common features</term>
<term>Cultured cells</term>
<term>Cytoplasm</term>
<term>Cytoplasmic</term>
<term>Cytoplasmic vacuolation</term>
<term>Cytoplasmic vacuoles</term>
<term>Damage limitation</term>
<term>Degeneration</term>
<term>Different ways</term>
<term>Distinct form</term>
<term>Editions scientifiques</term>
<term>Electron micrograph</term>
<term>Endoplasmic reticulum</term>
<term>Endothelial cells</term>
<term>Epithelial</term>
<term>Epithelial cells</term>
<term>Extensive vacuolation</term>
<term>Fibroblast</term>
<term>Filamentous elements</term>
<term>General features</term>
<term>Hela</term>
<term>Hela cells</term>
<term>Henics</term>
<term>Hydropic vacuolation</term>
<term>Insect cells</term>
<term>Intense vacuolation</term>
<term>Intracellular water</term>
<term>Large number</term>
<term>Lytic</term>
<term>Mammalian cells</term>
<term>Osmotic pressure</term>
<term>Other agents</term>
<term>Oxidative injury</term>
<term>Pancreatic acinar cells</term>
<term>Pancreatic cells</term>
<term>Perinuclear</term>
<term>Perinuclear cytoplasm</term>
<term>Permanent features</term>
<term>Phase separation</term>
<term>Primary cultures</term>
<term>Procaine hydrochloride</term>
<term>Ptkl cells</term>
<term>Rabies virus</term>
<term>Serous nature</term>
<term>Sertoli cells</term>
<term>Serum ultrafiltrate</term>
<term>Shrinkage necrosis</term>
<term>Similar example</term>
<term>Spontaneous vacuolation</term>
<term>Tissue culture</term>
<term>Toxin</term>
<term>Vacuolar</term>
<term>Vacuolating</term>
<term>Vacuolating agents</term>
<term>Vacuolation</term>
<term>Vacuolation process</term>
<term>Vacuole</term>
<term>Vacuoles form</term>
<term>Vesicle</term>
<term>Water content</term>
<term>Weak bases</term>
<term>Wheatley</term>
<term>Wheatley biology</term>
<term>Wide variety</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Summry— This review focuses on a widely‐observed morphological phenomenon, a unique class of cytoplasmic vacuolation, found in cultured (mammalian) cells. This vacuolation is quite distinct from autophagosomal and heterophagosomal, ie excessive lysosomal vacuolation, and occurs in most cell types spontaneously or via a wide range of inductive stimuli. Apart from vacuolation arising artefactually (usually due to poor fixation), spontaneous vacuolation occurs in individual or small clusters of cultured cells without apparent change in their local environment, while neighbouring cells remain completely unaffected. Since spontaneous vacuolation is unpredictable, the process of vacuolation — or ‘vacuolisation’ — (‘Vacuolation’ is the state of being with vacuoles; ‘vacuolisation’ therefore implies the process of becoming vacuolated. However, only the quicker term vacuolation will be used throughout this review to refer to the process of vacuole development.) induced experimentally, and hence relatively reproducibly by a range of substances and disturbances, offers an experimental approach which should give further insight into its physiology and pathophysiology. Unfortunately, our knowledge here remains woefully inadequate compared with the purely morphological aspects of the phenomenon. Vacuolation following disturbances could have an underlying common mechanism; however, a review of the literature suggests that this is not the case, and that it occurs via several different pathways, involving many different cell organelles and structures. All cells appear to retain the capacity to vacuolate for some physiological purpose, and it can be a permanent feature in many cell types, particularly ‘lower’ organisms and plants. Vacuolation in cells is generally seen as an adaptive physiological response, presumably for ‘damage limitation’, but very little is known about the intracellular homeostatic mechanisms which operate to restore the status quo. Where damage limitation fails, cells usually die quickly, but no clear evidence has been found that this is in any way ‘programmed’. It is argued that the demise which occurs via the vacuolation route may, in fact, be a distinct form of cell death which is difficult to fit into the conventional lytic and apoptotic modes.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Autriche</li>
<li>Hongrie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<country name="Hongrie">
<noRegion>
<name sortKey="Henics, Tamas" sort="Henics, Tamas" uniqKey="Henics T" first="Tamás" last="Henics">Tamás Henics</name>
</noRegion>
</country>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Henics, Tamas" sort="Henics, Tamas" uniqKey="Henics T" first="Tamás" last="Henics">Tamás Henics</name>
</region>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Wheatley, Denys N" sort="Wheatley, Denys N" uniqKey="Wheatley D" first="Denys N" last="Wheatley">Denys N. Wheatley</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002680 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002680 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:457C5DB5194167CDCC950A80AAE38B8E9327A60A
   |texte=   Cytoplasmic vacuolation, adaptation and cell death: A view on new perspectives and features
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021